Conceptual Problems (2): Land Surface Data Assimilation: where are we at?

Gabriëlle De Lannoy, Rolf Reichle, Randy Koster Clara Draper, Qing Liu, Bart Forman; Part(1) - William Lahoz

Global Modeling and Assimilation Office (Code 610.1), NASA/GSFC, Greenbelt, MD, USA

Laboratory of Hydrology and Water Management, Fac. Bioscience Engineering, Ghent University, Belgium

Norwegian Institute for Air Research, Norway

9 Feb 2012

Outline

Soil Moisture Data Assimilation

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

Soil Moisture Data Assimilation

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

Soil Moisture Data Assimilation

SM DA

SM RS

SM Val

AMSR-E DA

AMSR-E/ASCAT

SMOS/SMAP

SMOS SM DA

SMOS Tb DA

SMOS Tb/SM DA

Summary

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

Soil Moisture Data Assimilation

Assimilation of Surface Soil Moisture

AMSR-E/SMOS/SMAP/... surface obs A

- only 5 cm depth, coarse scale
- limited coverage in space and time
- measurement error

Ancillary information

- data assimilation parameters
- land surface model (LSM)
- radiative transfer model (R
- surface meteorology

Assimilation of Surface Soil Moisture

AMSR-E/SMOS/SMAP/... surface obs Ancillary information

Data

Assimilation

- only 5 cm depth, coarse scale
- limited coverage in space and time
- measurement error

- data assimilation parameters
- land surface model (LSM)
- radiative transfer model (R
- surface meteorology

- Surface soil moisture (\sim top 5 cm)
- Root zone soil moisture (\sim top 1 m)
- Other geophysical fields
- ⇒ continuous, fine-scale, with error estimates

GMAO works on SMAP L4_SM

Assimilation of Surface Soil Moisture

AMSR-E/SMOS/SMAP/... surface obs Ancillary information

Data

Assimilation

- only 5 cm depth, coarse scale
- limited coverage in space and time
- measurement error

- data assimilation parameters
- land surface model (LSM)
- radiative transfer model (R
- surface meteorology

- Surface soil moisture (\sim top 5 cm)
- Root zone soil moisture (\sim top 1 m)
- Other geophysical fields
- ⇒ continuous, fine-scale, with error estimates

GMAO works on SMAP L4 SM

Validation: in situ ground measurements

Remote Sensing of Soil Moisture

Soil Moisture Data Assimilation

SM DA

SM RS

SM Val

AMSR-E DA

AMSR-E/ASCAT

SMOS/SMAP

SMOS SM DA

SMOS Tb DA

SMOS Tb/SM DA

Summary

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

active/passive microwave

actual measurements:
brightness temperature or backscatter
retrieval:
soil moisture

- $\square \Rightarrow$ assimilate radiances or retrievals
- lower frequency → deeper penetration depth
 - better correlation between surface observations and root-zone soil moisture
 - correspondingly adjust model structure
- resolution: 3-40 km
 - downscaling, scale mismatch with model

In Situ Soil Moisture: Validation

Soil Moisture Data Assimilation

SM DA

SM RS

SM Val

AMSR-E DA

AMSR-E/ASCAT

SMOS/SMAP

SMOS SM DA

SMOS Tb DA

SMOS Tb/SM DA

Summary

Snow Data
Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

USA:

- SCAN (x): point measurements
- USDA CalVal (□): watershed average

Cross-mask locations and times with qualitative satellite and in situ data

Australia (Murrumbidgee):

- point measurements
- satellite pixel average (dense point-scale obs)

AMSR-E Soil Moisture Assimilation

Soil Moisture Data Assimilation

SM DA

SM RS

SM Val

AMSR-E DA

AMSR-E/ASCAT

SMOS/SMAP

SMOS SM DA

SMOS Tb DA

SMOS Tb/SM DA

Summary

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

- precipitation corrections to MERRA: CMAP, GPCP, CPC
- 2 different AMSR-E soil moisture retrieval products: NSIDC, LPRM
- ensemble Kalman filter

(Liu et al., JHM, 2011)

Soil moisture (anomaly) skill increases with

- precipitation corrections, and
- assimilation of surface soil moisture retrievals

Improved root-zone soil moisture

AMSR-E Soil Moisture Assimilation

Soil Moisture Data Assimilation

SM DA

SM RS

SM Val

AMSR-E DA

AMSR-E/ASCAT

SMOS/SMAP

SMOS SM DA

SMOS Tb DA

SMOS Tb/SM DA

Summary

Snow Data
Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

- Little River CalVal site
- coarse-scale AMSR-E downscaling (3D-filter)
- initialize with low, medium, high soil moisture

↓ increasingly deeper soil layers:

(Sahoo et al., AWR, 2012, in review)

Assimilation helps balancing the model and reduces spinup time

AMSR-E and ASCAT Soil Moisture Assimilation

Soil Moisture Data Assimilation

SM DA

SM RS

SM Val

AMSR-E DA

AMSR-E/ASCAT

SMOS/SMAP

SMOS SM DA

SMOS Tb DA

SMOS Tb/SM DA

Summary

Snow Data
Assimilation

Terrestrial Water Storage Assimilation

Modeling,

Re-Analysis

Gaps in Our Understanding

Conclusions

State updating with passive (AMSR-E) and active (ASCAT) microwave obs

- Skill: anomaly R [-](+ confidence intervals)
- 2007-2010
- SCAN/SNOTEL (US) + Murrumbidgee (AUS)

Significant skill increase:

- AMSR-E and ASCAT assimilation
- surface and root-zone soil moisture
- mainly low vegetation

(Draper et al., GRL, 2012, accepted)

ISSI-9Feb12 - 9 / 34

SMOS and **SMAP**

Soil Moisture Data Assimilation

SM DA

SM RS

SM Val

AMSR-E DA

AMSR-E/ASCAT

SMOS/SMAP

SMOS SM DA

SMOS Tb DA

SMOS Tb/SM DA

Summary

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

SMOS (ESA, Soil Moisture Ocean Salinity)

- launched November 2009
- L-band radiometer
- sensing depth = 5 cm
- 40 km resolution

SMAP (NASA, Soil Moisture Active Passive)

- launch 2014
- L-band radiometer/radar
- sensing depth = 5 cm
- 3-40 km resolution

→ Assimilate soil moisture retrievals and brightness temperatures (separately) from SMOS to prepare for SMAP Soil Moisture Data Assimilation

SM DA

SM RS

SM Val

AMSR-E DA

AMSR-E/ASCAT

SMOS/SMAP

SMOS SM DA

SMOS Tb DA

SMOS Tb/SM DA

Summary

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

GEOS-5 Catchment LSM:

- 36 km, 1 Jan 2010 1 Nov 2011
- ☐ Fortuna 2.3 version with 5 cm surface layer, MERRA forcings

■ Radiative Transfer Model (RTM):

- \Box $\tau-\omega$ model: soil moisture/temperature, vegetation water/temperature \to Tb
- Confront Model with Observations::
 - □ soil moisture: bias, LSM soil parameterization; anomaly DA
 - ☐ Tb: RTM parameter estimation; assimilation

SMOS Soil Moisture

SMOS Soil Moisture

SMOS Retrieval Assimilation

Soil Moisture Data Assimilation

SM DA

SM RS

SM Val

AMSR-E DA

AMSR-E/ASCAT

SMOS/SMAP

SMOS SM DA

SMOS Th DA

SMOS Tb/SM DA

Summary

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

Surface Soil Moisture: ΔR [-]

Root-Zone Soil Moisture: ΔR [-]

SMOS retrieval assimilation improves soil moisture estimates for both the surface and root-zone.

-0.2

SMOS Tb Calibration

Limit model bias before data assimilation

- 1 Jan 2011 1 Nov 2011
- ← SMOS observed Tb, H-pol, 42.5°
- **↓ Model predictions** Tb, H-pol, 42.5°
- with prescribed RTM parameters (SMAP, LSMEM literature, ECMWF)
- after RTM parameter estimation(1 Jan 2010 1 Jan 2011)

Split sample: Unbiased Tb predictions after multi-angular Tb calibration

SMOS Tb Calibration

SMOS Tb Validation

Soil Moisture Data
Assimilation

SM DA

SM RS

SM Val

AMSR-E DA

AMSR-E/ASCAT

SMOS/SMAP

SMOS SM DA

SMOS Tb DA

SMOS Tb/SM DA

Summary

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

1 January 2010 - 1 November 2011: multi-angle average of H-pol Tb observation-minus-forecasts [K]

Some limited seasonal bias remaining after climatology calibration

SMOS Retrieval vs. Radiance Assimilation

SCAN/SNOTEL	Surface			Root-zone	
SM DA	SMOS	OL	DA	OL	DA
R* [-]	0.52	0.59	0.67	0.64	0.68
	(0.37, 0.65)	(0.45, 0.69)	(0.54, 0.76)	(0.53, 0.73)	(0.58, 0.76)
ubRMSE** $[m^3/m^3]$	0.072	0.060	0.056	0.049	0.046
Tb DA	SMOS	OL	DA	OL	DA
R* [-]	0.52	0.58	0.70	0.66	0.65
	(0.37, 0.65)	(0.43, 0.70)	(0.57, 0.79)	(0.55, 0.75)	(0.52, 0.75)
ubRMSE** $[m^3/m^3]$	0.072	0.061	0.055	0.046	0.045

^{*} with 95% confidence intervals; ** target uncertainty for SMAP = $0.04 \text{ m}^3/\text{m}^3$

- ightharpoonup increase in R, decrease in RSME
- not screened for complex topography; see next slide
- Tb DA still includes seasonal bias, non-optimal RTM (preliminary results!)
- number of analysis steps different for retrieval and radiance assimilation; see next slide

Assimilation Time Steps

% assimilation time steps with SM only

Tb only

Only half of the time steps have both valid SM retrievals and Tb observations available. Main reason: Tb is limited to alias-free zones only, while SM is not.

number of assimilation time steps

Most data in Great Plains

SMOS Retrieval vs. Radiance Assimilation

Soil Moisture Data Assimilation

SM DA

SM RS

SM Val

AMSR-E DA

AMSR-E/ASCAT

SMOS/SMAP

SMOS SM DA

SMOS Tb DA

SMOS Tb/SM DA

Summary

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

Surface soil moisture skill, incl. identical amount of time steps (analysis and forecast, during 1 Jan 2010 - 1 Jan 2011)

Retrieval and radiance assimilation may be more or less beneficial in particular conditions; work in progress

Soil Moisture Assimilation

Soil Moisture Data Assimilation

SM DA

SM RS

SM Val

AMSR-E DA

AMSR-E/ASCAT

SMOS/SMAP

SMOS SM DA

SMOS Tb DA

SMOS Tb/SM DA

Summary

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

- lacktriangle new missions ightarrow deeper soil penetration
- retrieval assimilation (AMSR-E, ASCAT, SMOS SM into CLSM): well documented improvements in surface and root-zone soil moisture
- radiance assimilation (SMOS Tb into CLSM+RTM): promising improvements in surface and root-zone soil moisture
- climatological observation-forecast bias:
 - □ CLSM soil parameters optimization
 - □ RTM parameter calibration
- scale discrepancies: downscaling, anomaly assimilation

Soil Moisture Data Assimilation

Snow Data Assimilation

Snow RS

SWE DA

SCF DA

Setup

AMSR-E/MODIS

snow

AMSR-E Tb

Terrestrial Water Storage

Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

Snow Data Assimilation

Remote Sensing of Snow

Soil Moisture Data Assimilation

Snow Data Assimilation

Snow RS

SWE DA

SCF DA

Setup

AMSR-E/MODIS snow

AMSR-E Tb

Terrestrial Water Storage

Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

LSM

- AMSR-E: passive microwave sensor (radiometer), snow: dominantly 18.7/36.5 GHz, 25 km resolution
- **MODIS**: visible/near infrared, spatial resolution: 500 m

AMSR-E

- Actual measurements
- = brightness temperature
- Snow Water Equivalent = retrieval

- 25 km AMSR-E snow water equivalent (SWE)
 - ightarrow downscaling
- 500 m MODIS snow cover fraction (SCF)
 - \rightarrow update SWE

SWE Assimilation

Soil Moisture Data Assimilation

Snow Data Assimilation

Snow RS

SWE DA

SCF DA

Setup

AMSR-E/MODIS snow

AMSR-E Tb

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

- snow water equivalent = coarse-scale estimate of water in the snowpack
- 3D filter, using multiple coarse obs for each fine-scale update
- spatially correlated forecast perturbations
- no boundary effects, horizontal propagation

SCF Assimilation

Soil Moisture Data Assimilation

Snow Data Assimilation

Snow RS

SWE DA

SCF DA

Setup

AMSR-E/MODIS snow

AMSR-E Tb

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

- snow cover fraction = fine-scale indirect/incomplete measurement of snowpack
- observation operator converts SWE to SCF
- lacktriangle model divergence ightarrow rule-based update

$$\hat{\mathbf{x}}_{i}^{-} = \begin{pmatrix} swe^{-} \\ snd^{-} \end{pmatrix}_{i}$$

$$scf^{-} = \hat{\mathbf{y}}_{i}^{j-} \equiv \mathbf{h}_{i}(\hat{\mathbf{x}}_{i}^{j-})$$

SCF Assimilation

Soil Moisture Data Assimilation

Snow Data Assimilation

Snow RS

SWE DA

SCF DA

Setup

AMSR-E/MODIS snow

AMSR-E Tb

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

- snow cover fraction = fine-scale indirect/incomplete measurement of snowpack
- observation operator converts SWE to SCF
- lacksquare model divergence ightarrow rule-based update

$$\hat{\mathbf{x}}_{i}^{-} = \begin{pmatrix} swe^{-} \\ snd^{-} \end{pmatrix}_{i}$$

$$scf^{-} = \hat{\mathbf{y}}_{i}^{j-} \equiv \mathbf{h}_{i}(\hat{\mathbf{x}}_{i}^{j-})$$

If no predicted snow:

if
$$[scf^{obs} - scf^{-}] > 0.5$$
,

then add snow

SCF Assimilation

Soil Moisture Data Assimilation

Snow Data Assimilation

Snow RS

SWE DA

SCF DA

Setup

AMSR-E/MODIS snow

AMSR-E Tb

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

- snow cover fraction = fine-scale indirect/incomplete measurement of snowpack
- observation operator converts SWE to SCF
- lacksquare model divergence ightarrow rule-based update

$$\hat{\mathbf{x}}_{i}^{-} = \begin{pmatrix} swe^{-} \\ snd^{-} \end{pmatrix}_{i}$$

$$scf^{-} = \hat{\mathbf{y}}_{i}^{j-} \equiv \mathbf{h}_{i}(\hat{\mathbf{x}}_{i}^{j-})$$

If no predicted snow:

if
$$[scf^{obs} - scf^{-}] > 0.5$$
,

then add snow

If full cover snow (no spread):

if
$$[scf^{obs} - scf^{-}] < 0.5$$
,

then remove snow

Study Area

Soil Moisture Data Assimilation

Snow Data Assimilation

Snow RS

SWE DA

SCF DA

Setup

AMSR-E/MODIS snow

AMSR-E Tb

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

North Park, CO, $75 \times 100 \text{ km}^2$

period 2002-2010

validation: SNOTEL (\circ), COOP (Δ)

AMSR-E & MODIS DA: Multi-Sensor, Multi-Scale

Soil Moisture Data Assimilation

Snow Data
Assimilation

Snow RS

SWE DA

SCF DA

Setup

AMSR-E/MODIS snow

AMSR-E Tb

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

25 km **AMSR-E** snow water equivalent (SWE) downscaling:

500 m MODIS snow cover fraction (SCF)

 \rightarrow update SWE:

Joint (multi-scale) SWE and SCF assimilation: improved results in shallow snow locations (only)

- AMSR-E SWE: lacks realistic interannual variability, mainly in deep snow
- MODIS SCF DA: improved timing of snow accumulation onset

(De Lannoy et al., WRR, 2012)

AMSR-E Brightness Temperature

Soil Moisture Data Assimilation

Snow Data Assimilation

Snow RS

SWE DA

SCF DA

Setup

AMSR-E/MODIS snow

AMSR-E Tb

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

Prepare for the direct radiance assimilation of AMSR-E observations

- artificial neural network
- input: snow density, water equivalent, liquid water content snow/air/soil temperatures
- output: Tb_{H10} , Tb_{V10} , Tb_{H18} , Tb_{V18} , Tb_{H36} , Tb_{V36}
- training & validation:
 split sample

ANN provides robust predictions of multi-channel/pol Tb (difficulty: ice layers)

(Forman et al., IEEE/TGARS, 2012, submitted)

Soil Moisture Data Assimilation

Snow Data Assimilation

Terrestrial Water Storage Assimilation

GRACE TWS

TWS DA

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

Terrestrial Water Storage Assimilation

GRACE TWS

Soil Moisture Data Assimilation

Snow Data Assimilation

Terrestrial Water Storage Assimilation

GRACE TWS

TWS DA

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

Total Water Storage = soil moisture + groundwater + vegetation + snow (SWE)

- monthly, ~200 km resolution mass anomalies (with respect to a multi-year mean gravity field)
- partitioning into storage components
- ensemble Kalman smoother

GRACE TWS

Soil Moisture Data Assimilation

Snow Data Assimilation

Terrestrial Water Storage Assimilation

GRACE TWS

TWS DA

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

Total Water Storage = soil moisture + groundwater + vegetation + snow (SWE)

- monthly, ~200 km resolution mass anomalies (with respect to a multi-year mean gravity field)
- partitioning into storage components
- ensemble Kalman smoother

TWS Assimilation

Soil Moisture Data Assimilation

Snow Data Assimilation

Terrestrial Water Storage Assimilation

GRACE TWS

TWS DA

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

- validation against runoff and SWE in the Mackenzie river basin (2002-2008)
- GRGS product assimilated without post-glacial rebound correction

 \Rightarrow assimilation (\blacksquare) of TWS improves individual storage components (SWE and runoff) over the open loop (\square)

SWE Validation vs CMC

Runoff Validation vs Gages

(Forman et al., WRR, 2012)

Soil Moisture Data Assimilation

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Merra-Land

Gaps in Our Understanding

Conclusions

Modeling, Re-Analysis

MERRA and MERRA-Land

Soil Moisture Data Assimilation

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Merra-Land

Gaps in Our Understanding

Conclusions

MERRA and MERRA-Land

Soil Moisture Data
Assimilation

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Merra-Land

Gaps in Our Understanding

Conclusions

- MERRA: 1979-present (updated w/ \sim 1 month latency), global, Lat=0.5°, Lon=0.67°, 72 vertical levels
- MERRA-Land: Enhanced product for land surface hydrological applications (*Reichle et al., J. Clim., 2011*)
- ⇒ improved soil moisture, runoff, canopy interception and latent heat flux through precipitation corrections and an enhanced model parameterization

Remaining Gaps

Soil Moisture Data Assimilation

Snow Data Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

Observations

- sensitivity to variable of interest (e.g. snow water equivalent, soil moisture penetration depth)
- time/space gaps, resolution

Models

- simplified processes
- structure
- parameters

Data Assimilation

- random/systematic error specification (e.g. optimal error magnitudes, Gaussian errors?, . . .)
- coupling of land surface updates with atmosphere/ocean

Conclusions

Soil Moisture Data Assimilation

Snow Data
Assimilation

Terrestrial Water Storage Assimilation

Modeling, Re-Analysis

Gaps in Our Understanding

Conclusions

Use satellite data to improve land surface estimates

- Retrieval data assimilation
 - ☐ AMSR-E/ASCAT/SMOS SM: improved surface and root-zone SM
 - ☐ AMSR-E SWE: interannual variability?
 - ☐ MODIS SCF: improved snow onset
 - ☐ GRACE TWS: improved SWE, runoff
- Radiance data assimilation
 - RTM calibration for SMOS/SMAP
 - prepare observation operator for AMSR-E snow assimilation
- Modeling, Re-analysis:

MERRA/MERRA-Land

Questions? Gabrielle.DeLannoy@nasa.gov

